
D2.4 Software prototype v1

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

Date: 2014-07-31
Version 1.0
Document id. : duraark/2014//D.2.4/v1.0

D2.4 Software prototype v1 1 of 53

Grant agreement number : 600908

Project acronym : DURAARK

Project full title : Durable Architectural Knowledge

Project’s website : www.duraark.eu

Partners : LUH – Gottfried Wilhelm Leibniz Universitaet Hannover (Coordinator) [DE]
UBO – Rheinische Friedrich-Wilhelms-Universitaet Bonn [DE]
FhA – Fraunhofer Austria Research GmbH [AT]
TUE – Technische Universiteit Eindhoven [NL]
CITA – Kunstakademiets Arkitektskole [DK]
LTU – Lulea Tekniska Universitet [SE]
Catenda – Catenda AS [NO]

Project instrument : EU FP7 Collaborative Project

Project thematic priority : Information and Communication Technologies (ICT) Digital Preservation

Project start date : 2013-02-01

Project duration : 36 months

Document number : duraark/2014/D.2.4

Title of document : Software prototype v1

Deliverable type : Software prototype

Contractual date of delivery : 2014-07-31

Actual date of delivery : 2014-07-31

Lead beneficiary : Fraunhofer Austria (FhA)

Author(s) : Martin Hecher <martin.hecher@fraunhofer.at> (FhA)
Dag Field Edvardsen <dag.fjeld.edvardsen@catenda.no> (Catenda)
Sebastian Ochmann <ochmann@cs.uni-bonn.de> (UBO)
Michael Panitz <michael.panitz@tib.uni-hannover.de> (LUH)
Hamid Rofoogaran <hamid.rofoogaran@ltu.se> (LTU)
Ujwal Gadiraju <gadiraju@l3s.de> (L3S)
Besnik Fetahu <fetahu@l3s.de> (L3S)

Responsible editor(s) : Martin Hecher <martin.hecher@fraunhofer.at> (FhA)

Quality assessor(s) : Jakob Beetz <j.beetz@tue.nl> (TUE)
Martin Tamke <martin.tamke@kadk.dk> (CITA)

Approval of this deliverable : Jakob Beetz <j.beetz@tue.nl> (TUE)
Stefan Dietze <dietze@l3s.de> (LUH)

Distribution : Public

Keywords list : prototype, workbench, use cases

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 2 of 53

Executive Summary

This report describes the first version of the integrated software prototype comprising
the software prototypes developed in DURAARK so far. It exposes the functionality
of the prototypes as a service-oriented platform (the "Workbench") and provides it to
stakeholders via a coherent graphical user interface (the "WorkbenchUI"), yielding an
integrated application for performing long-term archival tasks for BIM data from the view
of a front-end stakeholder. Additionally, the software acts as a service provider for third
party developers to be able to integrate the functionality developed in DURAARK in
their own (existing) applications.

The report guides a stakeholder through the usage of the graphical user interface, describes
the components on a technical level and gives interested readers and developers information
on how to use the Workbench as a service provider.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

Table of Contents

1 Introduction . 5

2 DURAARK Workbench . 9

2.1 User Manual . 9

2.1.1 Workflow: SIP Generation 11

2.1.2 Workflow: Search & Retrieve 17

2.1.3 Workflow: Semantic Archive Maintenance 18

2.1.4 Workflow: Geometric Enrichment 19

3 Technical Implementation . 21

3.1 Software Design . 21

3.1.1 Overall Architecture . 22

3.1.2 Frontend - User Interface (UI) Modules 23

3.1.3 Backend - Web Services 24

3.2 Components . 25

3.2.1 File Identification . 26

3.2.2 E57 Metadata Extraction 27

3.2.3 SIP Generator . 28

3.2.4 Rosetta-PROBADO3D Connector 30

3.2.5 PROBADO3D . 30

3.2.6 Geometric Enrichment . 31

3

D2.4 Software prototype v1 4 of 53

4 Decisions & Risks . 33

4.1 Technical decisions and impacts 33

4.2 Risk assessment . 35

5 Licenses . 38

6 Conclusions & Impact . 39

Appendices 41

1 Service Endpoints - RESTful API Description 41

1.1 Session Management . 41

1.2 File Identification . 43

1.3 IFC Meta-data Extraction . 43

1.4 E57 Meta-data Extraction . 44

1.5 Semantic Enrichment . 49

1.6 SIP Generator . 50

1.7 PROBADO3D - List . 50

1.8 PROBADO3D - Fulltext Search . 51

2 Representational State Transfer (REST) Principles 53

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 5 of 53

1 Introduction

This report describes the first version of the integrated software prototype, which is
referred to as the DURAARK Workbench in the remainder of the document. The
purpose of the Workbench is to provide an integrated platform for the software deliverables
developed in the project, as well as the future ones. Currently the following software
prototypes are included:

• The Workbench acting as service-oriented platform for the functionality developed
in DURAARK and providing a coherent web-based user interface to access the
functionality from a stakeholder point of view. The user manual and the technical
architecture description are available in this report.

• The Semantic Digital Archive (SDA) which consists of a number of sub-
components integrated into the workbench. While their general use is described in
this report, more in-depth technical aspects can be found in report D3.3 describing
the first SDA prototype.

• The Point Cloud tools responsible for the geometric enrichment of E57 files.
Those tools are generating additional files containing corresponding information
which is then uploaded to the preservation system via the Workbench. From the
set of planned tools this version of the integrated prototype contains the point
cloud registration prototype described in report D4.1. There is no integration of
the software deliverable produced in D5.1, yet. The software is responsible for
recognition of meaningful shapes and point cloud compression. The integration
will be done for the milestone in M30, which will also contain D5.2, due in M20.
This way the M30 prototype will contain both WP5 deliverables in a consistent
way (from the view of a stakeholder) to extend the Workbench with WP5’s topic
"Recognition of Architecturally Meaningful Structures and Shapes". Also, the point
cloud compression feature will only be used in M30 for providing the stakeholder
with a interactive 3D preview for a point cloud. From an implementation point
of view the integration of D5.1 and D5.2 are very similar to D4.1, there are no
conceptual tasks left to solve for their integration.

Figure 1 gives an overview of the structure of the reports that accompany this software
deliverable.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 6 of 53

With the integrated software prototype a stakeholder is able to perform a selection of use
cases defined in report D2.1. The selection is the following:

• UC1: Deposit 3D architectural objects

• UC2: Search and retrieve archived objects

• UC3: Maintain Semantic Digital Archive

• UC8: Exploit contextual information for urban planning

• UC9: Enrich BIM/IFC model with metadata from a repository

integrated DURAARK workbench

Integrated
Software Prototype 1

D2.4

Semantic Digital Archive
Prototype

D3.3

Semantic Digital Archive Digital Preservation SystemPoint Cloud Tools

Documenting the
Changing State of Built

Architecture
software prototype v1

D4.1

Figure 1: Overview of the scope of the M18 software prototypes and respective
reports

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 7 of 53

The workbench organizes the use cases into workflows. A workflow is a step-by-step
process on how to achieve the purpose of one or multiple use cases. For instance, one
of the implemented workflows handles the generation of a SIP (Submission Information
Package) file from a set of given input files. In this case the workflow covers UC1, the
deposition of 3D architectural objects, as well as UC9, the enrichment of the BIM/IFC
model with metadata from a repository. This is a list of the workflows provided by the
workbench so far:

SIP Generation A stakeholder selects a set of input files describing a building. After
a file identification the automatically extracted metadata of the files is shown and
editable. Based on the metadata an automatic enrichment with Linked Open Data
is performed and stored in a metadata record. In a final step, the input files and the
metadata record are archived into a downloadable SIP file and the metadata record
of the SIP is indexed into a PROBADO3D database for later search & retrieval.
Covered use cases: UC1, UC8

Search & Retrieval A stakeholder is provided with a list of generated SIP files. Meta-
data records for the SIP can be displayed. A full-text search within all metadata
records allows the stakeholder to filter the list of files.
Covered use case: UC2

Geometric Enrichment The geometric enrichment workflow is based on the desktop
application yielded from the software deliverables D4.1 and D5.1 in M12. After
the selection of one or multiple IFC and E57 files a stakeholder is provided with a
graphical user interface for performing a geometric registration of the input files.
The process yields a mapping file that can be added to a SIP file in within the SIP
Generation workflow.
Covered use case: UC9

Semantic Archive Maintenance The maintenance of the SDA component is managed
by this workflow. A stakeholder is provided with graphical user interfaces for i) the
content of the SDO and SDA sub-components that include crawling, profiling and
archiving evloving temporal states of the Linked Datasets used in the Long Term
Preservation scenarios covered by DURAARK.
Covered use case: UC3

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 8 of 53

Figure 2: A screenshot of the integrated Workbench software prototype for selecting
a workflow.

The main part of this document is dedicated to the description of these workflows in
section 2.1. The remainder of this report is structured in the following way: Section 2
describes the DURAARK Workbench, including the workflow description in form of a user
manual. Section 3 sheds light on the architectural design of the workbench. In Section 4
a rationale for design decisions is given, together with a discussion on their risks. Finally
a conclusion and impact description is given in Section 6.

Source Code

The source code of the Workbench itself as well as of most individual components is
available under an Open Source license and can be accessed at the following URLs:

Workbench https://github.com/DURAARK/workbench

E57 metadata extractor https://github.com/DURAARK/e57Extract

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

https://github.com/DURAARK/workbench
https://github.com/DURAARK/e57Extract

D2.4 Software prototype v1 9 of 53

2 DURAARK Workbench

The DURAARK Workbench is a service-oriented platform comprising the software
deliverables produced over the life-time of the DURAARK project. The functionality of
the deliverables is accessible via a coherent graphical user interface (GUI). The GUI is
referred to as the WorkbenchUI in the remainder of this section, the service-oriented
platform as Workbench, where the functionality of the software deliverables are called
Components.
The WorkbenchUI is the graphical part of this software deliverable allowing a stakeholder
to go through a workflow. Section 2.1 explains the intended usage of the WorkbenchUI in
form of a user manual. Each workflow is described, accompanied by screenshots of the ap-
plication. The actual software is available via the URL http://workbench.duraark.eu

for testing.
The WorkbenchUI is interacting with the components through a service-oriented applica-
tion programming interface (API) layer. In Section 3.2 a functional description of each
component is given, together with the current state of its implementation. Appendix 1
describes and the API to the components.

2.1 User Manual

This user manual guides a stakeholder through the usage of the WorkbenchUI with the
description of four workflows:

1. SIP Generation

2. Search & Retrieval

3. Geometric Enrichment

4. Semantic Archive Maintenance

The WorkbenchUI is a web application accessible with a web browser via the URL
http://workbench.duraark.eu. Workflow 1,2 and 4 are solely running within a web
browser. Workflow 3 (Geometric Enrichment) uses the point cloud registration prototype
from software deliverable D4.1, which is implemented as a desktop GUI application. This
application has to be installed on the stakeholders computer, the process is described in

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu
http://workbench.duraark.eu

D2.4 Software prototype v1 10 of 53

the corresponding section of the user manual.

The general user-interaction paradigm for the WorkbenchUI is to first select the desired
workflow from the start screen of the application, depicted in Figure 2. The stakeholder
is then guided through the individual steps of the workflow. Each step is carried out
in a so called page (following the web application terminology). Figure 3 shows the
general structure of a page: On top there is a "Next/Previous" button bar that moves
the stakeholder from one page to the next or previous one. Below the page title and a
description of the current workflow step is given. The bottom most section contains the
interactive part of the page and/or displays data. The usage of those parts is the focus of
this user manual.

Workflow 3 and 4 are special as they provide a selection of tools before starting the user
interaction. Depending on the task it is possible that only a single page contributes to a
workflow.

The remainder of this section goes through the four workflows and describes each con-
tributing page. When applicable, the component connected to the GUI page is mentioned
so that interested readers have the possibility to get a more technical description of the
component in Section 3.2 or dive into the description of the corresponding application
programming interface (API) in Appendix 1.

Figure 3: Page layout example: (top) Workflow navigation (center) Description of
the workflow step (bottom) Area for user-interaction and/or data display

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 11 of 53

2.1.1 Workflow: SIP Generation

The SIP generation workflow allows the stakeholder to upload data files describing a
building which are then packaged into a single SIP file that is ready to be uploaded into a
digital preservation system. In the process the files are identified and metadata is added.

Figure 4: Session Page

2.1.1.1 Session Page The SIP generation is organized in so called sessions. The
stakeholder creates a new session via the New Session button after entering a name for it.
The session is added to the list on the bottom of the page and can be started via the Start
button, as well as deleted via the red cross button. The purpose of a session is to a) start
a session, work on it and resume it at a later point and b) to allow collaborative working
on a session. E.g., Stakeholder A starts a session and provides input files, Stakeholder B

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 12 of 53

works on the corresponding metadata record.

To allow easy testing of the application one predefined session is provided, already
containing input files. When selecting the predefined session the page described next in
this user manual (the file upload) is skipped. Creating a new session and starting it opens
the File Upload Page.

Related content: Appendix 1.1 shows the API.

2.1.1.2 File Upload Page This page allows the stakeholder to upload files relating
to the same building(s) into the session. An IFC file and/or an E57-file have to be
uploaded. If both file types are uploaded an optional registration file between the two
can be selected. The workflow for creating a registration file is described in 2.1.4. For
uploading the stakeholder selects the desired files from the computer and presses Upload.
When the upload is finished - which is indicated via a message - the Next button is enabled
to continue to the File Identification Page.

Figure 5: File Upload Page

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 13 of 53

2.1.1.3 File Identification Page If a file of type E57 is present in the session an
identification of the file takes place via the DROID file profiling tool from "National
Archives"1. Depending on the size of the file this process can take up to a few minutes.
The result of the identification is presented in the Identified Files section of the page.
A green label in the table cell Identified Format indicates a successfull identification,
a red label an unsuccessful one. In this case the stakeholder is asked to check the up-
loaded E57 file and upload the corrected file. The purpose of the screen is to prevent
the upload of an invalid (E57) file into a long-term preservation system without know-
ing. Also the following metadata extraction requires a correctly identified file type as
input, to prevent follow-up errors in the application. After a successfull identification
the stakeholder clicks on the Next button to proceed to theMetadata Extraction Page.

At present, file identification is supported for E57 files only. Profile patterns for IFC
should be ready by the end of the summer 2014.

Related content: Section 3.2.1 gives a deeper look into the used File Identification
component. Appendix 1.2 shows the API.

Figure 6: File Identification Page
1DROID profiling tool: http://www.nationalarchives.gov.uk/information-management/

manage-information/policy-process/digital-continuity/file-profiling-tool-droid/

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/
http://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/

D2.4 Software prototype v1 14 of 53

2.1.1.4 Metadata Extraction Page On this page the session is searched for an IFC
and a E57 files. If one of them or both are found the metadata for the files is extracted
in a background process. The extracted metadata is listed and can be changed by the
stakeholder by clicking on the respective cell. If one or more mandatory metadata entries
are not present in the IFC file the application automatically adds those entries and colors
the entries in red, so that the stakeholder gets a visual hint on which mandatory entries
are still missing2. Be aware that no validation of entered metadata is taking place at the
moment. After changes are made the (appearing) Save button has to be clicked to persist
the changes. The resulting metadata entries are stored and will be added to the final SIP
file in form of an RDF Turtle file.

Related content: Section 3.2.2 gives a deeper look into the used E57 metadata extractor
component. The IFC metadata extractor is described inD3.3. Appendix 1.4 and Appendix
1.3 show the API.

Figure 7: Metadata Extraction Page
2In this version of the application the definition of mandatory metadata is not finalized yet and will

change in future versions.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 15 of 53

2.1.1.5 Semantic Enrichment Page This component uses metadata extracted from
the ingested IFC file to search for addtional information which the session will be enriched
with. The search is able to incorporate different sources from the available metadata
(e.g. city names). This version of the Workbench is taking the postal address in the
metadata as search criteria. The page shows a list of the related linked open data (LOD)
sets and is stored within the RDF file that goes into the SIP file at the end of the workflow.

Future versions will allow a more fine-grained control over the enrichment process, as well
as manual modification of the found data-sets.

Related content: D3.3 gives a deeper look into the used Semantic Enrichment com-
ponent. Appendix 1.5 shows the API.

Figure 8: Semantic Enrichment Page

2.1.1.6 SIP Generation Page This page presents all files that will be packaged in
accordance to the implementation specifics of the digital preservation system (DPS). The
engineering metadata from the extraction of the IFC and E57 files together with the
descriptive metadata from the enrichment process are put together into a single RDF file
("buildm.ttl") that goes into the archive. This includes the structuring of all digital objects

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 16 of 53

and the metadata records into a METS file in accordance to the specification of the vendor.

The Content Overview lists the package archive with file names, sizes and type. Clicking
the Generate SIP button starts the background process to generate the archive. In this
process a mapping from the metadata RDF file to the METS structure is done yielding in
a sip.xml METS file. The resulting archive is a ZIP file with the sip.xml and a content
folder as root items. The content folder contains the uploaded files together with the
RDF metadata file. The generated ZIP file is of version 2.0, for which we recommend
the free software 7zip3 for opening the archive. Tests showed that the integrated ZIP
archive handler in Microsoft Windows 7 was not always capable of opening the valid archive.

Depending on the file size of the session files this process takes up to a few minutes.
After a successfull creation of the archive the SIP can be downloaded via the appearing
Download SIP button. Hidden from the user the generated SIP file is passed over to
the PROBADO3D-Rosetta Connector4 (see Section 3.2.4) which creates an entry in the
PROBADO3D component’s internal database (see Section 3.2.5 to allow the stakeholder to
search for the metadata of generated SIPs later on (see 2.1.2 for the workflow description).

This page finishes the SIP Generation workflow and yields a SIP file that is ready for
uploading to the digital preservation system. The actual upload is target in future versions
of the Workbench. The SIP package will be targeting the commercial Rosetta DPS then.

Related content: Section 3.2.3 gives a deeper look into the used SIP Generation
component. Appendix 1.6 shows the API. Section 3.2.4 explains the PROBADO3D-
Rosetta Connector component, Section 3.2.5 the PROBADO3D component.

37zip download URL: http://www.7-zip.org/download.html
4Despite the name the component is not yet deriving it’s input data from the Rosetta system, but

works directly on the SIP file. This will change in future versions of the Workbench.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://www.7-zip.org/download.html

D2.4 Software prototype v1 17 of 53

Figure 9: SIP Generation Page

2.1.2 Workflow: Search & Retrieve

This workflow provides the stakeholder with the possibility to search for metadata that was
ingested into the PROBADO3D database via the SIP generation workflow. PROBADO3D
is a content-based indexing and retrieval service for non-textual documents, e.g. for
BIM related (meta)data. Keep in mind that the generated SIP is not persisted at the
moment, as this is the task of the DPS which will be integrated in future versions; only
the metadata is). The page starts with the listing of all generated SIP creation events and
allows the stakeholder to inspect the corresponding metadata. The Search field provides a
filtering method. The stakeholder enters a search term resulting in a full-text query over
all metadata entries. The resulting SIP creation events are listed.

Related content: Section 3.2.5 gives a deeper look into the used PROBADO3D com-
ponent. Appendix 1.7 and Appendix 1.8 show the API.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 18 of 53

2.1.3 Workflow: Semantic Archive Maintenance

This workflow includes two tools, which are selectable via the Semantic Archive Main-
tenance start page:

• SDO Information

• Dataset Crawler Module (which is described in D3.3. Please refer to that document
for a user manual.)

The SDO Information tools allows to lookup information that is stored in the Se-
mantic Digital Observatory (SDO). The SDO component discovers and retrieves suitable
architecture-relevant datasets in crawling linked open data sources and provides structured
metadata on those datasets. The Dataset Crawler Module is part of the SDO and performs
the actual crawling of data. A detailed explanation to both can be found in D3.3, here
the GUI integrated in the WorkbenchUI is described.

Figure 10 shows the SDO Information page. The stakeholder is provided with a list of
data sources which are used for crawling linked open data. A name, description, URL and
last crawl date is displayed for all the endpoints. The Search Topic box allows searching
for specific data-sets in all of the listed end-points and after clicking the Search button a
list with the results is displayed.

Related content: Report D3.3 explains the SDO and the Dataset Crawler Module.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 19 of 53

Figure 10: List of SDO endpoints and search mask

2.1.4 Workflow: Geometric Enrichment

The start page for the geometric enrichment (see Figure 11) shows a list of available point
cloud tools. In this version the "registration prototype" from the D4.1 software deliver-
able is available and can be selected. This software is a standalone desktop application,
which needs to be installed before the first usage. If the software was not installed yet
the stakeholder is provided with a download link and installation instructions. After a
successfull installation a click on the icon opens the Session Page (see 2.1.1.1). Here the
stakeholder can select one of the existing sessions or creates a new session. A click on
the Start button of an existing session starts the download of the IFC/E57 files denoted
in the session. After a successfull download the registration prototype opens with the
downloaded files as input. Figure 12 shows the appearing GUI with the two selected files
loaded. At this point, the reader is referred to D4.1, Appendix A, for a description of the
usage of the registration software prototype.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 20 of 53

After the registration process is finished the resulting mapping RDF file has to be stored
on the local harddrive. This file serves as input file for the SIP Generation workflow
described in Section 2.1.1.

Figure 11: Geometric Enrichment tool selection page

Figure 12: Start page of the registration prototype

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 21 of 53

3 Technical Implementation

3.1 Software Design

When developing web applications, in many cases their structure is following a common
pattern that consists of three layers: a frontend layer containing the user interface logic
and the display of data (the GUI), ii) a backend layer that processes and provides data and
iii) a communication layer between those two. The frontend layer is located in the user’s
web browser, the backend layer is running on a server host accessible via the internet.
The connection layer is a data exchange protocol that transports data over a network
connection, e.g. a RESTful API5.
For the DURAARK project it is necessary to integrate different components from partners
into a coherent, integrated software prototype. The input and output characteristic of
the developed components is suited to be mapped to the described common pattern. For
instance, to upload data to the DPS it is first necessary to select the files that should be
persisted. The user selects files in the web browser, which is happening in the frontend
layer. Those files are then uploaded to a web server and are checked for the correct
file type, which is happening in the backend layer. The other components developed in
DURAARK (see 3.2 for a list and the respective descriptions) fit this pattern, too.
As a consequence and for having a platform for connecting the heterogeneous components
the decision was taken to develop a general framework - the DURAARK Framework -
providing a sound base for developers in the project and possible future (third party)
developers. The vision for the DURAARK Framework is to provide a future-proof,
extensible and light-weight software library for building web applications focusing on
long-term archival of data.

5See http://www.infoq.com/articles/rest-introduction for an introduction to REST and
RESTful APIs.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://www.infoq.com/articles/rest-introduction

D2.4 Software prototype v1 22 of 53

3.1.1 Overall Architecture

Figure 13: Integration design diagram for the DURAARK framework

The overall architecture is directly derived from the web application pattern described in
Section 3.1. On the frontend side, so-called User Interface (UI) Modules are responsible
for displaying data and interacting with the user. On the backend side Web Services
are processing data and deliver the data in a consumable form for the UI modules. The
web service layer of the DURAARK framework provides a RESTful API to communicate
between service and UI module. The actual implementation of the web service has to
be provided by the developer. This decoupled approach makes it easy to exchange the
implementation of a web service with another or updated one, without having to change
a) the code in the consuming UI module and b) the API code of the web service.
Figure 13 shows the overall architecture. The framework holds a list of UI modules which
can be registered to the system, allowing a central module management with version

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 23 of 53

control, automatic update mechanisms, access control, etc. On the backend another
module management component keeps track of all the registered web services. The UI
modules communicate with a web service via a RESTful API. The API handles a request
from a UI module and delegates it to the web service implementation, which in turn
delivers the requested data back.
The architecture allows for two communication scenarios between UI modules and web
services. First, a UI module is directly communicating with a web service, which is the
case when the web service needs to be configured by the user (e.g. in entering metadata
that the service processes then). The second scenario covers the direct communication
between two web services. This is the case if - for instance - the service responsible for
the generation of a SIP package asks the service for file identification to verify, if a file
has the correct type before creating the package. In both cases the defined RESTful API
is the enabler for this kind of application-to-application communication.
A stakeholder is interacting with the frontend part of the framework. She does not have
to know anything about the web services that are doing the actual work (data) processing.
Also, the web services (as the name suggests) can be distributed over the network, it is
not necessary for them to reside within a single server context. For instance, the services
related to the SDA (see D3.3) and the PROBADO3D service are running on different
servers than the rest of the components, which are located on a single server in the current
setup.

3.1.2 Frontend - User Interface (UI) Modules

A User Interface (UI) Module is a visual page within the web browser that is a) displaying
data and b) allows for interaction with the user. The technology stack consists of HTML
and CSS for the visual representation of data and Javascript for the user interaction logic.
The DURAARK framework is using an existing Javascript library that is tailored for
presenting data in a web browser and for manipulating this data. The library is called
Backbone.Marionette6. Backbone.Marionette provides the basic tools for a structured
development of user interface logic, is actively developed and has a broad and active
community.

6MarionetteJS: http://marionettejs.com

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://marionettejs.com

D2.4 Software prototype v1 24 of 53

3.1.3 Backend - Web Services

This part is the backend of the framework running on a server. It provides the developer
with base classes that cover common functionality used when developing web services
for the DURAARK project. The base classes allow to create a RESTful API around
standalone executables that have a file as input and produce a) an output file or b)console
output for further processing. For instance, one component takes care of file identification.
The component is available as a standalone executable and needs an IFC or E57 file as
input. Its output is a description file that contains informations for the provided file. This
is a typical processing step for web services in the DURAARK context, which is common
for other components in the project, too.
The framework supports the developer in creating a RESTful API around a given function-
ality (e.g. a standalone executable). The implementation providing concrete functionality
(e.g. the file identification component) is exchangeable, whereas the API does not have
to be changed when used with another implementation of the service. This approach
encourages a stable API development and a clear separation of concerns between service
interfaces and their implementation.
As a basis for the web services part of the DURAARK framework the software library
NodeJS7 is used, which provides the functionality to start a web server and handles
requests from and responses to clients (e.g. a UI module). It is written in Javascript and
is a stable and well-tested software library with a broad user community and an active
development line.

7NodeJS: http://nodejs.org

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://nodejs.org

D2.4 Software prototype v1 25 of 53

3.2 Components

Components are the functional parts developed in the project which are accessible as web
services. The DURAARK framework provides the infrastructure to connect the graphical
user interface of the integrated prototype (the "WorkbenchUI") with the web services via
an RESTful API. The tools for the geometric enrichment workflow (currently containing
the D4.1 software deliverable application) are the second type of components. Those are
graphical standalone applications which are not reasonably transferable to a web service
implementation at the moment, as they require graphical user interaction that is not easily
done via a UI module because of the web browser runtime environment. For this reason
the DURAARK framework provides the possibility to "start-up" the tools via a UI module
(see 2.1.4). The stakeholder uses the application and produces a result, which in turn is
again handled by a corresponding workfow in the WorkbenchUI. In the current version
the D4.1 "Documenting the Changing State of Built Architecture" application (in short:
registration prototype) produces a geometric mapping file between IFC/E57 files. The
IFC/E57 input files are determined by the stakeholder via the WorkbenchUI (meaning
that DURAARK’s web services, as well as the developed desktop applications are working
on the very same files) and the produced output file is used in the SIP Generation workflow
as input file (see Section 2.1.1).

The approach of separating a service from its user interface is a powerful mechanism to
enable new and existing applications (eventually written in other programming languages
than Javascript) integrate the DURAARK functionality, as a RESTful API is client-
agnostic. This way the GUI is completely independent from the service implementation.
Figure 14 shows the DURAARK framework approach on how to connect the UI modules
of the WorkbenchUI with the web service and desktop application components.
This section gives an overview on the components that are developed within the DURAARK
project and which are not already described in report D3.3. D3.3 includes the Semantic
Digital Archive (SDA), the Semantic Digital Observatory (SDO) including the Dataset
Crawler Module mentioned in the user manual section 2.1 and the component for the
semantic enrichment of an IFC file. This report D2.4 gives an overview of the technical
implementation of the following components:

• File Identification

• E57 Metadata Extraction

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 26 of 53

• SIP Generator

• Rosetta-PROBADO3D Connector

• PROBADO3D

• Geometric Enrichment tools

Figure 14: Architectural diagram for the Workbench platform

3.2.1 File Identification

Since the exact file format identification is needed for preservation planning of the
ingested files, the widely used file format identification tool from the National Archives
DROID (Digital Record and Object IDentification) was chosen for the DURAARK

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 27 of 53

Workbench8. DROID is developed for archives and institutions which have to identify file
formats for their stored objects. It identifies formats based on patterns (e.g file format
extension, internal IDs, etc.) and is updated constantly through xml-based signature
files which provide the linking to the entries in the PRONOM technical registry with its
assigned PUID (Pronom Unique IDentifier).
Figure 16 show the integration of the component into the Workbench.

Figure 15: Integration design diagram for the File Identification component

3.2.2 E57 Metadata Extraction

The E57 metadata extractor is a shared library written in C++ which uses libE57 at
its core to parse E57 point cloud files and extract meta-information like - for instance -
the number of scans, number of points, acquisition date, dimensions of embedded images,
etc. In addition to the library, a command-line tool is provided which exposes the
library’s functionality. This command-line tool may be used as a stand-alone component
for metadata extraction without having to link the library code directly into another
component by calling the executable from another process. When the tool is executed
with the "--help" argument, a concise usage guide is printed. Otherwise, the tool must be
given at least an input E57 file using the "--input" parameter. The output may be either
written to a file using the "--output" parameter to specify the output file path, or – if no
"--output" parameter is given – written to standard output for piping it to another process.
The desired output format may be specified using the "--format" parameter which can
have either “json” or “xml” as its value; JSON is the default if no format is specified. The
extracted metadata is output in a structured, hierarchical format so that it may be further
processed by other components, or for ingest into the archive alongside the E57 data files.

8DROID profiling tool: http://www.nationalarchives.gov.uk/information-management/
manage-information/policy-process/digital-continuity/file-profiling-tool-droid/

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/
http://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/

D2.4 Software prototype v1 28 of 53

Figure 16: Integration design diagram for the Metadata Extraction component.

3.2.3 SIP Generator

A digital archive must have features and methods to receive and manage digital content.
This should, wherever possible, be done in an automatic process which means that digital
objects should be delivered in a structured and standardized way. In order to achieve
this, a software is developed within the DURAARK project that generates a Submission
Information Package (SIP) to be delivered to a DPS. The SIP generator software will
support producers with the process of compiling digital assets to be ingested to a digital
archive.

Input to this module consists of both manually entered data by the producer/user captured
by the GUI, uploaded files and automatically captured metadata such as file identification
results consisting of e.g. unique id, size and hash sum.
The SIP generator is written in Java and is using a database for temporary storage of
meta data.
Figure 17 shows the sequential actions taken to generate a SIP package, Figure 19 shows
the integration into the Workbench.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 29 of 53

Figure 17: Sequence diagram for the SIP generation

Figure 18: Integration design diagram for the SIP Generator component

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 30 of 53

3.2.4 Rosetta-PROBADO3D Connector

In general the Rosetta-PROBADO3D Connector is responsible for indexing data uploaded
to the Rosetta system. Rosetta is providing a REST interface that allows to access the
uploaded data. The connector will be utilizing this interface to request the metadata that
is necessary for the indexing process, so that the user can search the dataset later on.
However, for this M18 software prototype the Rosetta system is not targeted yet. Therefore
the connector is taking the RDF metadata file generated via the SIP generation workflow
indexes the data directly from the that file, instead of requiring the same information
from the Rosetta REST interface.
Internally a new dataset entry is created for each generated SIP. The dataset is filled with
the given metadata stored into the internal database of the PROBADO3D system.

Figure 19: Integration design diagram for the Rosetta-PROBADO3D Connector
component

3.2.5 PROBADO3D

The PROBADO framework allows integration of content-based indexing and retrieval
methods for non-textual documents. The PROBADO3D architecture follows a three layer
approach which consists of a repository layer, a core system layer, and a presentation layer.
Distributed local repositories implement document-type specific indexing and accessing
techniques, including rich meta data models. The PROBADO3D core layer keeps track of
all document repositories registered in the system. It maintains an integrated index of all
documents. The presentation layer offers rich user access methods, including graphical
query specification, and document visualization. PROBADO defines a system protocol
based on web service technology. It allows dispatching content-based and metadata-based
user queries to local repositories, which manage the primary documents. Synchronization

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 31 of 53

methods allow the repositories to inform the core system about availability and updates
of hosted contents.

PROBADO3D is used as the interface for browsing and searching the generated SIP
items. This can either be done by using the PROBADO3D web pages or the various web
interfaces provided by the PROBADO3D service. PROBADO3D is especially tailored to
the needs of the architectural domain and establishes a search & retrieval infrastructure
(e.g. indexing, 3D PDF preview generation, etc), which can be easily utilized for the
various DURAARK needs.

Figure 20: Integration design diagram for the PROBADO3D Search & Retrieval
component

3.2.6 Geometric Enrichment

The components developed in WP4 and WP5 are implemented as standalone desktop
tools which do not directly connect to remote services but instead process files residing
on the user’s (client) computer. Their main purpose is the enrichment of datasets before
the actual ingest takes place. For the first DURAARK system prototype, we have focused
on the integration of the registration prototype (D4.1) for demonstrating the workflow
using standalone desktop tools; other software prototypes of WP4 and WP5 will work in a
similar manner. Figure 21 shows an overview of the registration component’s input/output
specification.
The envisioned workflow for using the registration component is as follows. During
the preparation of the ingest of multiple new datasets of the same building using the
WorkbenchUI (for instance multiple scans taken at different points in time or a point
cloud and a corresponding BIM model), the user has the opportunity to select a pair of
datasets which shall be registered (i.e. spatially aligned) to each other. It is assumed

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 32 of 53

that the datasets are available as local files during the ingest process. After selection of
the datasets, the registration prototype (i.e. the software prototype executable) may be
started from within the WorkbenchUI which is automatically provided with the file paths
of the selected files as command line arguments. These paths are used to initialize the file
chooser which is presented to the user by the executable.
At this point, the reader is referred to D4.1, Appendix A, for a description of the usage of
the registration software prototype.
After the datasets have been registered and the resulting mapping has been exported as
an RDF file, the exported file may be selected/uploaded to the WorkbenchUI for inclusion
in the SIP generation workflow (see 2.1.1).

Figure 21: Integration design diagram for the registration component.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 33 of 53

4 Decisions & Risks

4.1 Technical decisions and impacts

Web-based user interface for the integrated prototype

The software’s graphical user interface ("WorkbenchUI") is developed with a web technol-
ogy stack running in a web browser. The browser environment implies advantages over a
standalone desktop application, the most important one being the platform independence
of the application. A web browser provides a standardized environment9. developers can
work with. This environment is (to the most degree) the same on different platforms, e.g.
Microsoft Windows, Linux and MacOS, but also for the very popular mobile platforms
Android, iOS, Windows Mobile, etc. This has the tremendous advantage that when
developing an application with a web technology stack it will automatically be usable
on the most popular desktop and mobile platforms, without the need to change the
application code.

Developing against a browser environment has restriction that are relevant for the DU-
RAARK context. The data sets stakeholders will work with can be huge in size. The
web based Workbench is running on a remote server and it is necessary to transmit the
files from the local harddisk to the remote server, where the different services have access
to them. Even with a reasonably decent network connection an upload of a file that is
hundreds of mega-bytes in size takes multipe minutes or even hours.

NodeJS as runtime enviroment for web services

The web services developed in DURAARK are contained within a NodeJS environment.
Their purpose is to wrap standalone executables or other web services developed in the
project and provide a RESTful API for accessing their functionality to a GUI layer or
other services (e.g. application-to-application communication). The wrapper layer is
rather thin. It takes care of starting an executable or web service and processing its
output so that it is consumable by a client. NodeJS is a reasonable choice for a server
backend as it has become very popular in the last years as it is easy to program, provides

9Client-side web standards are organized in multiple standard bodies and working groups. The most
prominent ones are the World Wide Web Consortium (W3C, http://w3.org/ and the Web Hypertext
Application Technology Working Group (WHATWG, http://www.whatwg.org/

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://w3.org/
http://www.whatwg.org/

D2.4 Software prototype v1 34 of 53

a scalable architecture and has a large community that adds a lot of useful functionality in
form of modules. The used programming language is Javascript, which is consistent with
the UI module programming language. The advantage is that for programmers familiar
with Javascript on the browser side the entry hurdle for developing Javascript based web
services is low. The knowledge of a single programming language allows to write user
interface logic and web services for DURAARK.

RESTful API

The service-oriented architecture of the DURAARK framework separates functionality
provider from the respective user interface(s). The communication layer was chosen to
be a RESTful API10. REST means "Representational State Transfer" and is a way to
implement heterogeneous application-to-application communication (also including the
communication with a user interface module).

With a RESTful API the definition of the REST principles (see a simplified explanation
of them in Appendix 2 already gives a developer a lot of knowledge about the provided
interface. How to access to the API is recommended (though not standardized) via the
use of HTTP verbs (e.g. GET for retrieving information, POST for creating new entities,
PUT for updating existing entities) that already have a semantic meaning. The second
principle of REST is the use of Unified Resource Identifiers (URIs) which uniquely identify
a provided entity or resource (e.g. a "session" in DURAARK), which can be shared or
bookmarked.

The RESTful API allows to access the functionality developed in DURAARK to be
accessed by existing or new application which are not implemented in Javascript. The only
prerequisite for accessing the API is a network socket, which is available in all relevant
programming languages.

JSON as data exchange format

A RESTful API is capable of answering request in different formats, representing the
same information, e.g. XML, JSON or a custom format. In DURAARK, JSON is the

10See http://www.infoq.com/articles/rest-introduction for an introduction to REST and
RESTful APIs.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://www.infoq.com/articles/rest-introduction

D2.4 Software prototype v1 35 of 53

chosen exchange format. JSON means "Javascript Object Notation" and was developed
for the Javascript language to exchange data in a standardized way11. As the frontend
and backend logic in the project is Javascript, JSON is a natural choice to exchange data
between the web services and the UI modules. Every Javascript implementation includes
tools for parsing and reading JSON out-of-the-box, making it very easy to use the format.
When using other programming languages to access the DURAARK web services tools
are available to handle JSON in those languages.

4.2 Risk assessment

This section gives a summary of the Impact section in listing the discussed technical risks,
consequence and treatment action:

Risk Description The development of web technology based applications loses momen-
tum, resulting in an unsupported development stack.

Risk Assessment .

Impact High

Probability Low

Description Currently the web browser and the corresponding web technology
stack is gaining much attention in application development, mostly because of
the advantage of platform independency in the context of mobile development.
The probability is rather low that the web technology stack is abandoned in
the future.

Contingency Solution WP2 is closely following the developments of web technologies.
If the momentum gets lost the endorsed technology will be evaluated and a plan for
porting the existing software will be made. Because of the modular design of the
DURAARK framework a change to existing and well-established technology stacks
(e.g. Qt/C++, XAML/C#, Swing/Java) would be possible, too.

11JSON explanation and standard description: http://json.org/

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://json.org/

D2.4 Software prototype v1 36 of 53

Risk Description Javascript as the main programming language for backend and fron-
tend is not accepted by the community.

Risk Assessment .

Impact High

Probability Low

Description In a community it is possible that multiple programming languages are
used by respective programmers. A wide-spread myth (though with decreasing
tendency) blames Javascript as a non-compatible language compared to Python,
Java, etc., which results from the moved Javascript history.

Contingency Solution If the community is not adopting the Javascript-based approach
of the DURAARK framework it is still possible to use the existing functionality via
the RESTful API. Adding a new web service is possible as providing a RESTful
API to a functional block does not demand a Javascript implementation and can
be achieved in any other language. The DURAARK project endorses to develop
of modular backend functionality and exposing it via a well-defined API. The
only disadvantage is that the respective developer can not use the already existing
DURAARK framework.

The integration os new UI modules which are not based on a web technology stack
is supported, DURAARK is already integrating standalone desktop applications
which are not web based.

Risk Description incl. Cause Javascript is too slow for either a user interface or web
service task as it is an interpreted, CPU bound language.

Risk Assessment .

Impact Medium

Probability Medium

Description Javascript is an scripting language executed by an interpreter. Com-
pared to compiled languages like C++ or Java an interpreted language is slower
per design.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 37 of 53

Contingency Solution For the user interface a CPU intense task can be delegated to a
backend web service. On the backend a CPU intense task can be handled in the
programming language of choice and then wrapped via NodeJS.

Risk Description The stakeholder has no or slow access to the internet, the web appli-
cation can not be executed, file uploads take too long.

Risk Assessment .

Impact High

Probability Low

Description As web application the DURAARK Workbench heavily depends on a
internet connection with reasonable bandwith for a) accessing the application
and b) for uploading files to the web services. A non-existing connection
prevents the usage of the software, a slow connection reduces the user experience
dramatically.

Contingency Solution The M18 version of the prototype is a pure web application and
will not work without an internet connection. However, projects exist that allow to
convert existing web applications into a standalone desktop application1213, where
the majority of existing source code can be reused without additional programming
work. WP2 will look into this projects to assess their capabilities for producing
a desktop application als alternative to the current web application. This would
remove the necessity for an internet connection and long upload times for large
files, as the services working on the files will run locally on the users computer with
access to the local files. However, some services in DURAARK are depending on
an internet connection (e.g. the semantic enrichment; the SIP upload to a digital
preservation service) and will not be usable without it. Still, the session-based
design of the Workbench allows to perform the steps where no internet connection
is required and pass on the session to an internet-enabled computer to resume the
session there.

12atom-shell: https://github.com/atom/atom-shell/
13node-webkit: https://github.com/rogerwang/node-webkit/

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

https://github.com/atom/atom-shell/
https://github.com/rogerwang/node-webkit/

D2.4 Software prototype v1 38 of 53

5 Licenses

The following table gives an overview of the software licences generated and used for the
web services and UI modules implementation:

IPR
Type

IP used
or gener-
ated

Software name License Information

software generated DURAARK Framework MIT D2.4
software generated DURAARK Workbench MIT D2.4
software used Backbone.Marionette MIT http://marionettejs.com/
software used NodeJS MIT http://nodejs.org/

Licenses regarding the components from D3.3 can be found in the respective report.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 39 of 53

6 Conclusions & Impact

The "Workbench" as an integrated software prototype provides a platform for integrating
existing and future software prototype deliverables into a set of workflows. Stakeholders
defined in earlier reports are able to perform the use cases UC1, UC2, UC3, UC8 and UC9
when stepping through the four provided workflows SIP Generation, Search & Retrieval,
Geometric Enrichment and Semantic Archive Maintenance.

The DURAARK Workbench is divided into two conceptual parts; the web services provid-
ing functionality in the context of long-term archival of BIM data, as well as a graphical
user interface to access the functionality from the point of view of a stakeholder. This
conceptual separation of concerns is a central aspect of the project’s architecture. After
the lifetime of the project the prototype should be usable by various stakeholders either as
a frontend user or as a developer. With the component based architecture it is possible to
customize the workflows to fit the various needs of different stakeholders. This flexibility
will support the acceptance of the Workbench as a service platform.

Developing the web services "separated" from the user interface forces the development
to focus on how a service is exposed to the external world through a reasonable API.
Moving forward with the corresponding GUI at the same time tests the API and allows
to enhance it on the go. The result is a stable, well-tested interface to long-term archival
services together with a GUI that shows how to use those services "the right way".

This is the first version of the software prototype and the internal structure as well as the
GUI will incrementally be improved and adopted to the needs defined by the evaluation
activities in WP7. The general architecture and design decision, however, proved to be
suited for the purpose of this deliverable, namely to provide an integrated platform with
workflows to perform long-term archival use cases in the context of BIM data.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

Appendices

40

D2.4 Software prototype v1 41 of 53

1 Service Endpoints - RESTful API Description

In this section the RESTful API enpoints are listed. Examples for accessing the API are
given, as well as the corresponding JSON responses.

Internally the Workbench is using a "session" system to that holds the input files and
information on them. Each session has an ID, most of the provided services are working
based on that session id. A prerequisite therefore is the existence of a "session". In M18 a
session can only be created via the WorkbenchUI, see Section 2.1.1.1 on how to do that.
Currently the system provides two predefined session with ID "0" and ID "1". For the
following examples one of those IDs will be used. When creating new sessions via the
GUI those sessions can be used, too. The session ID can be found on the Session Page.

1.1 Session Management

API Description

Queries the data for the available sessions. The example response is listing two available
sessions with ID "0" and ID "1". The second example only lists data from session "0".

Example query and response

Query: http://workbench.duraark.eu/services/session
Response:

[{
"id": 0,
"label": "CCO_DTU-Building127",
"files": [{

"id": 0,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.ifc",
"name": "CCO_DTU-Building127_Arch_CONF.ifc",
"type": "ifc",
"size": "10.74 MB"

}, {
"id": 1,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.e57",
"name": "CCO_DTU-Building127_Arch_CONF.e57",
"type": "e57",
"size": "535.30 MB"

}],

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/session

D2.4 Software prototype v1 42 of 53

"uuid": "390685d6-e055-4fc0-9133-7384dee45c5e"
}, {

"id": 1,
"label": "Empire State Building",
"options": {

"demo_mode": true
},
"files": [{

"id": 0,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.ifc",
"name": "CCO_DTU-Building127_Arch_CONF.ifc",
"type": "ifc",
"size": "10.74 MB"

}, {
"id": 1,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.e57",
"name": "CCO_DTU-Building127_Arch_CONF.e57",
"type": "e57",
"size": "535.30 MB"

}],
"uuid": "0ffe055e-1360-47d4-a16c-026880c9eba5"

}]

Listing 1: Example response listing all available sessions.

Query: http://workbench.duraark.eu/services/session/0

Example response

{
"id": 0,
"label": "CCO_DTU-Building127",
"files": [{

"id": 0,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.ifc",
"name": "CCO_DTU-Building127_Arch_CONF.ifc",
"type": "ifc",
"size": "10.74 MB"

}, {
"id": 1,
"path": "./fixtures/repository/CCO_DTU-Building127_Arch_CONF.e57",
"name": "CCO_DTU-Building127_Arch_CONF.e57",
"type": "e57",
"size": "535.30 MB"

}],
"uuid": "0ffe055e-1360-47d4-a16c-026880c9eba5"

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/session/0

D2.4 Software prototype v1 43 of 53

}

Listing 2: Example response listing session with ID "0".

1.2 File Identification

API Description

Queries the DROID file identification component to identify the E57 file of a given session.
The example response shows status for the E57 file in session "0".

Example query and response

Query: http://workbench.duraark.eu/services/fileid/0

Example response

{
"name": "CCO_DTU-Building127_Arch_CONF.e57",
"format": "fmt/643",
"valid": true,
"formatString": "E57 (point cloud)"

}

Listing 3: Example response showing the status of the E57 file identification of session "0".

1.3 IFC Meta-data Extraction

API Description

Triggers the IFC metadata extractor component to query the metadata for the IFC file of
a given session. The example response shows metadata for the IFC file in session "0" as
an RDF Turtle string wrapped into a JSON response.

Example query and response

Query: http://workbench.duraark.eu/services/ifcm/0

Example response

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/fileid/0
http://workbench.duraark.eu/services/ifcm/0

D2.4 Software prototype v1 44 of 53

{
"rdf":
"@prefix dct: .
@prefix dbp-prop: .
@prefix geo-pos: .
@prefix xsd: .
@prefix duraark: .
@prefix qudt: .
@prefix dbpedia-owl: .
@prefix foaf: .
@prefix dc: .

duraark:object_identifier "2eD6iPVCPF0ADV8eYNtazn"^^xsd:string .
foaf:name "DTU 127"^^xsd:string .
dbp-prop:startDate "1970-01-01 01:00:00"^^xsd:date .
dbpedia-owl:buildingStartYear "1970-01-01 01:00:00"^^xsd:date .
duraark:length_unit "MILLIMETRE"^^xsd:string .
duraark:authoring_tool "Autodesk Revit 2013 Autodesk Revit 2013

2013"^^xsd:string .
duraark:authoring_tool "Eindhoven University of Technology ifcspfrdfcat

0.01a"^^xsd:string .
foaf:based_near [geo-pos:lat "55.68300000" ; geo-pos:lon "12.55000000"] .
duraark:floor_count "8"^^xsd:integer .
duraark:room_count "55"^^xsd:integer .
dbpedia-owl:address "Lyngby"^^xsd:string .
dc:creator "Morten Jensen"^^xsd:string .
duraark:enrichment_vocabulary "http://dbpedia.org/property"^^xsd:string .
duraark:enrichment_vocabulary "http://sws.geonames.org"^^xsd:string .
duraark:enrichment_vocabulary "http://vocab.getty.edu/aat"^^xsd:string .
duraark:enrichment_vocabulary "http://vocab.getty.edu/ontology"^^xsd:string .

"
}

Listing 4: Example response listing the metadata of the IFC file in session "0" encoded in RDF Turtle
and wrapped into JSON.

1.4 E57 Meta-data Extraction

API Description

Triggers the E57 metadata extractor component to query the metadata for the E57 file of
a given session. The example response shows metadata for the E57 file in session "0" as
an JSON response.

Example query and response

Query: http://workbench.duraark.eu/services/e57m/0

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/e57m/0

D2.4 Software prototype v1 45 of 53

Example response

{
"e57_metadata": {

"guid": "{7E3C7C9C-EFCB-4F5A-9A6F-98A08F72FB1B}",
"version_major": 1,
"version_minor": 0,
"creation_datetime": {

"year": 2011,
"month": 11,
"day": 3,
"hour": 19,
"minute": 5,
"seconds": 35.548999786376953

},
"coordinate_metadata": "undefined",
"scan_count": 1,
"image_count": 1,
"scan_size": 1,
"image_size": 1,
"scans": [{

"name": "parking000",
"guid": "{F0B3C105-325B-4FC9-9E01-3130153F9800}",
"original_guids": [],
"description": "",
"sensor_vendor": "",
"sensor_model": "",
"sensor_serial_number": "",
"sensor_hardware_version": "",
"sensor_software_version": "",
"sensor_firmware_version": "",
"temperature": 0,
"relative_humidity": 3.4028234663852886e+038,
"atmospheric_pressure": 3.4028234663852886e+038,
"acquisition_start": {

"year": 1980,
"month": 1,
"day": 6,
"hour": 0,
"minute": 0,
"seconds": 0

},
"acquisition_end": {

"year": 1980,
"month": 1,
"day": 6,
"hour": 0,
"minute": 0,
"seconds": 0

},
"pose": {

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 46 of 53

"rotation": {
"w": 0.99996960774189081,
"x": -0.0074585516927261801,
"y": -0.0022701539983015365,
"z": 0

},
"translation": {

"x": 89.951072690000004,
"y": 1.8420018,
"z": 2e-008

}
},
"index_bounds": {

"row_minimum": 0,
"row_maximum": 3470,
"col_minimum": 0,
"col_maximum": 8213,
"return_minimum": 0,
"return_maximum": 0

},
"cartesian_bounds": {

"x_minimum": -68.432470999999993,
"x_maximum": 57.134830999999998,
"y_minimum": -59.897230999999998,
"y_maximum": 70.512130999999997,
"z_minimum": -2.0202709999999997,
"z_maximum": 3.779801

},
"spherical_bounds": {

"range_minimum": 1.6562939999999999,
"range_maximum": 90.929899999999989,
"elevation_minimum": -1.0909121353667537,
"elevation_maximum": 1.5701933463079427,
"azimuth_minimum": 0,
"azimuth_maximum": -6.4112263142845904e-007

},
"intensity_limits": {

"intensity_minimum": 0,
"intensity_maximum": 1

},
"color_limits": {

"color_red_minimum": 0,
"color_red_maximum": 255,
"color_green_minimum": 0,
"color_green_maximum": 255,
"color_blue_minimum": 0,
"color_blue_maximum": 255

},
"point_fields": {

"cartesian_x_field": true,
"cartesian_y_field": true,
"cartesian_z_field": true,
"cartesian_invalid_state_field": true,

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 47 of 53

"spherical_range_field": false,
"spherical_azimuth_field": false,
"spherical_elevation_field": false,
"spherical_invalid_state_field": false,
"point_range_minimum": -268.43545599999999,
"point_range_maximum": 268.43545499999999,
"point_range_scaled_integer": 9.9999999999999995e-007,
"angle_minimum": 0,
"angle_maximum": 0,
"angle_scaled_integer": 0,
"row_index_field": true,
"row_index_maximum": 4095,
"column_index_field": true,
"column_index_maximum": 16383,
"return_index_field": false,
"return_count_field": false,
"return_maximum": 0,
"time_stamp_field": false,
"is_Time_Stamp_Invalid_field": false,
"time_Maximum": 0,
"intensity_field": true,
"is_intensity_invalid_field": false,
"intensity_scaled_integer": 3.0518509475997192e-005,
"color_red_field": true,
"color_green_field": true,
"color_blue_field": true,
"is_color_invalid_field": false

},
"points_size": 27802731

}],
"images": [{

"name": "parking000",
"guid": "{76BD148C-D22A-4FE3-8CB2-0FB01F96698B}",
"description": "",
"representation": "spherical",
"acquisition_datetime": {

"year": 1980,
"month": 1,
"day": 6,
"hour": 0,
"minute": 0,
"seconds": 0

},
"associated_data3D_guid": "{F0B3C105-325B-4FC9-9E01-3130153F9800}",
"sensor_vendor": "",
"sensor_model": "",
"sensor_serial_number": "",
"pose": {

"rotation": {
"w": 0.70283815264201144,
"x": 0.077691052038131911,
"y": 0.088163333920523737,
"z": 0.70157669443617587

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 48 of 53

},
"translation": {

"x": 89.951072690000004,
"y": 1.8420018,
"z": 2e-008

}
},
"visual_ref_representation": {

"jpeg_image_size": 0,
"png_image_size": 0,
"image_mask_size": 0,
"image_width": 0,
"image_height": 0

},
"pinhole_representation": {

"jpeg_image_size": 0,
"png_image_size": 0,
"image_mask_size": 0,
"image_width": 0,
"image_height": 0,
"focal_length": 0,
"pixel_width": 0,
"pixel_height": 0,
"principal_point_x": 0,
"principal_point_y": 0

},
"spherical_representation": {

"jpeg_image_size": 0,
"png_image_size": 23551883,
"image_mask_size": 0,
"image_width": 8187,
"image_height": 3471,
"pixel_width": 0.00076745772193576565,
"pixel_height": 0.0007666681778157584

},
"cylindrical_representation": {

"jpeg_image_size": 0,
"png_image_size": 0,
"image_mask_size": 0,
"image_width": 0,
"image_height": 0,
"pixel_width": 0,
"pixel_height": 0,
"radius": 0,
"principal_point_y": 0

}
}]

}
}

Listing 5: Example response showing the metadata of the E57 file in session "0".

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 49 of 53

1.5 Semantic Enrichment

API Description

Triggers the semantic enrichment component and lists data-sets found by the semantic
enrichment component based on metadata found (and eventually edited by the stakeholder)
in the IFC file. The example response shows (an excerpt) of the list of found data-sets for
session "0".

Example query and response

Query: http://workbench.duraark.eu/services/semanticenrichment/0

Example response

[{
"dataset_id": "28",
"dataset_name": "enipedia",
"resource_id": "184805",
"resource_uri": "http://enipedia.tudelft.nl/data/EU-ETS/person/S%F8ren%20Holm",
"property_uri": "http://enipedia.tudelft.nl/data/EU-ETS/city",
"resource_value": "184805

http://enipedia.tudelft.nl/data/EU-ETS/person/S%F8ren%20Holm
http://enipedia.tudelft.nl/data/EU-ETS/city"

}, {
"dataset_id": "28",
"dataset_name": "enipedia",
"resource_id": "238963",
"resource_uri": "http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant",
"property_uri": "http://enipedia.tudelft.nl/wiki/Property:City",
"resource_value": "238963

http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant
http://enipedia.tudelft.nl/wiki/Property:City"

}, {
"dataset_id": "28",
"dataset_name": "enipedia",
"resource_id": "238963",
"resource_uri": "http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant",
"property_uri": "http://www.w3.org/2000/01/rdf-schema#label",
"resource_value": "238963

http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant
http://www.w3.org/2000/01/rdf-schema#label"

}, {
"dataset_id": "28",
"dataset_name": "enipedia",
"resource_id": "238963",

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/semanticenrichment/0

D2.4 Software prototype v1 50 of 53

"resource_uri": "http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant",
"property_uri": "http://semantic-mediawiki.org/swivt/1.0#page",
"resource_value": "238963

http://enipedia.tudelft.nl/wiki/Copenhagen_Hydro_Powerplant
http://semantic-mediawiki.org/swivt/1.0#page"

}]

Listing 6: (Truncated) Example response listing data-sets found by the semantic enrichment component.

1.6 SIP Generator

API Description

Triggers the SIP Generator component. The example response shows the URL for
downloading the generated SIP.

Example query and response

Query: http://workbench.duraark.eu/services/semanticenrichment/0

Example response

{
"url": "a2844222-8d49-4734-a4b7-322c2ffa64fc.zip"

}

Listing 7: Example response containing the URL for downloading the generated SIP.

1.7 PROBADO3D - List

API Description

Lists the metadata to all previous SIP generation entries. The example response contains
a single entry.

The start and count parameters can be used for pagination.

Example query and response

Query: https://ogo.cgv.tugraz.at/api/Models?start=0&count=1

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

http://workbench.duraark.eu/services/semanticenrichment/0
https://ogo.cgv.tugraz.at/api/Models?start=0&count=1

D2.4 Software prototype v1 51 of 53

Example response

{
"sessionId": a2844222-8d49-4734-a4b7-322c2ffa64fc,
"startIndex": 0,
"count": 1,
"totalResultCount": 19,
"resultItems": [{

"documentIdentifier": 1015,
"description": "Test Ingestion",
"title": "CCO_DTU-Building127_Arch_CONF",
"creatorPersonId": 4,
"geoLocation": "<?xml version="1.0" encoding="utf-8"?><Point

xmlns="http://www.opengis.net/gml"><pos>50.94158
6.958498</pos></Point>",

"physicalAssets": null,
"fileInfos": []

}]
}

Listing 8: The example response lists the metadata for previous generated SIPs.

1.8 PROBADO3D - Fulltext Search

API Description

Allows to search the metadata of all previous SIP generation entries. The example response
contains a single result.

The start and count parameters can be used for pagination.

Example query and response

Query: https://ogo.cgv.tugraz.at/api/Models?fulltextQuery="CCO"&start=
0&count=1

Example response

{
"sessionId": a2844222-8d49-4734-a4b7-322c2ffa64fc,
"startIndex": 0,
"count": 1,
"totalResultCount": 19,

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

https://ogo.cgv.tugraz.at/api/Models?fulltextQuery="CCO"&start=0&count=1
https://ogo.cgv.tugraz.at/api/Models?fulltextQuery="CCO"&start=0&count=1

D2.4 Software prototype v1 52 of 53

"resultItems": [{
"documentIdentifier": 1015,
"description": "Test Ingestion",
"title": "CCO_DTU-Building127_Arch_CONF",
"creatorPersonId": 4,
"geoLocation": "<?xml version="1.0" encoding="utf-8"?><Point

xmlns="http://www.opengis.net/gml"><pos>50.94158
6.958498</pos></Point>",

"physicalAssets": null,
"fileInfos": []

}]
}

Listing 9: The example response lists the metadata for previous generated SIPs.

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

D2.4 Software prototype v1 53 of 53

2 Representational State Transfer (REST) Principles

The following is a simplified description of a selection of REST principles, the authorative
description can be found in Roy Fielding’s excellent PhD thesis14

Every resource has an ID In DURAARK a simple example to explain this principle
is to imagine an uploaded IFC file. The file gets the id ’0’ and is accessible by this
ID from other services or an UI module. For the web there is the unified concept
for IDs: the URI. URIs make up a global namespace, having the advantage that
resources behind a REST service are always accessible via the same URI, which can
be shared and bookmarked.

Interlinkage between resources Via hyperlinking it is possible to link from one re-
source to the other. The different resources do not have to be provided by the same
service, they can be distributed.

Use of standard methods The data behind an URI is served via the HTTP application
protocol (which in turn is based on the TCP transport protocol). HTTP provides
standard methods for accessing and manipulating the data encoded in the URI,
which are e.g. GET, POST, PUT or DELETE. For every resource those standard
methods provide a clear semantic on what the programmer intends to do with
the resource. For instance, calling the DELETE method on an URI clearly states
that the resource should be deleted. The standardized concept of the URI and the
standard methods provided by HTTP give a clear guidance even without extensive
documentation on how to use a REST interface.

Resources have multiple representations When accessing a URI to retrieve data
the client can specify via a HTTP header entry which data format he wants to
retrieve. In DURAARK the default (and currently only) format is JSON, however,
it is of course possible to implement the service to also support XML as the result
encoding.

14RoyFielding’sdescriptionofREST:http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm

DURAARK
FP7 – ICT – Digital Preservation
Grant agreement No.: 600908

Roy Fielding's description of REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Roy Fielding's description of REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

	Introduction
	DURAARK Workbench
	User Manual
	Workflow: SIP Generation
	Workflow: Search & Retrieve
	Workflow: Semantic Archive Maintenance
	Workflow: Geometric Enrichment

	Technical Implementation
	Software Design
	Overall Architecture
	Frontend - User Interface (UI) Modules
	Backend - Web Services

	Components
	File Identification
	E57 Metadata Extraction
	SIP Generator
	Rosetta-PROBADO3D Connector
	PROBADO3D
	Geometric Enrichment

	Decisions & Risks
	Technical decisions and impacts
	Risk assessment

	Licenses
	Conclusions & Impact
	Appendices
	Service Endpoints - RESTful API Description
	Session Management
	File Identification
	IFC Meta-data Extraction
	E57 Meta-data Extraction
	Semantic Enrichment
	SIP Generator
	PROBADO3D - List
	PROBADO3D - Fulltext Search

	Representational State Transfer (REST) Principles

