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Assessing implicit knowledge in BIM models 
with machine learning 

ABSTRACT 

The promise, which comes along with Building Information Models, is that they are information rich, machine readable and 

represent the insights of multiple building disciplines within single or linked models. However, this knowledge has to be stated 

explicitly in order to be understood. Trained architects and engineers are able to deduce not explicitly stated information, which is 

often the core of the transported architectural information. This paper investigates how machine learning approaches allow a 

computational system to deduce implicit knowledge from a set of BIM models. 

INTRODUCTION 

The adoption of Building Information Modelling (BIM) constitutes a radical shift in the way models in the building and construction 

industry are described. Traditional representations for architectural knowledge, such as architectural drawings, 3d models, technical 

descriptions and spreadsheets are transitioning into semantically-rich information models. Building related information no longer 

exists within discrete entities, but is kept in an interlinked context. BIM authoring tools for Design and Construction and Facility 

Management systems provide now semantic information about elements and spaces within buildings, their constituting elements, as 

their interrelation and performance. Currently huge efforts are put in place to create links between buildings, on local, regional and 

international level, through e.g. standardisation committees (buildingSMART 2014) or the Geospatial communities (Geospatial 

Media 2014), but as well through international research project, such as DURAARK (Durable Architectural Knowledge) 

(DURAARK 2015), a three year EU funded project on the creation and maintenance of semantic links between representations of 

buildings. 

Building Information Models, in formats such as a Revit database or IFC, have become the bond that connects disciplines by 

streamlining data exchange and connecting the construction with the operational phases of a building lifecycle. Building related 

knowledge is herein represented in an object oriented way, holding building element geometry, properties, and its interrelation to 

other objects. These objects can be part of the described building, but in addition relate to external objects or other sources of 

information, including building element libraries. Information can be related to physical entities, like a wall, as well as to intellectual 

or organisational constructs, for example spaces or organisations. Hence, the model can support many facets of the construction 

phase, and in addition guide the building’s operation with Facility Management tools or the planning of retrofitting tasks. 

The new class of information is directly machine-interpretable, as it conforms to a structured schema. The use of BIM models in 

current practice is however predominantly focussed on explicit information, such as property values, augmented with aggregate 

functions for the extraction of quantity information and clash detection based on geometrical inference (Tamke et al. 2014a). BIM 

models hold however information that is not explicitly stated, but lies implicit in the interrelation between the entities within a single 

model or in the interrelation of a large variety of models. And while years of practice train a building professional to immediately 

apprehend the functions of a space by means of merely symbolic two-dimensional representations, this information can currently not 

be assessed by machines. We ask, how these implicit second order descriptors can be assessed and whether this approach holds the 

potential to describe the qualitative aspects of a building. 

STATE OF THE ART 

This paper presents experimental approaches directed at extracting implicit data from building models. It shares its interest with 

parallel research into the assessment of architectural models. This is for instance concerned with parametric models (Davis 2014), the 

way these are set up and the complexity they address. The descriptors for this, such as dimensionality or cyclomatic complexity, stem 

from Computer Science and are produced by algorithms reading the parametric models. Stasiuk and Thomsen (2014) investigate 

open-ended processes of discovery and categorical description of form-found design models. Rather than looking at the properties 

that constrain the form-finding process, the study uses machine learning algorithms, such as k-means clustering, to categorize the 

models by means of emerging properties. Machine learning is particular interesting to the here described approach, as it is able to 

address the great variety that it is inherent in architectural designs and identify similarities rather than conformity. 

Approaches for explicitly querying building models can be qualified based on their intended use, their underlying technology and 

expressiveness of the query language, their amount of abstraction from underlying data and various other measures. A language like 

BimQL (Mazairac and Beetz 2013) provides means to extract entity instances from IFC models using the entity and attribute names 

defined in the IFC EXPRESS schema, as such it is an effective tool for people to extract explicit information. Other methods are 

developed for the purpose of conformance checking. Examples of this include Solibri Model Checker (Solibri 2014) which checks 

models for conformance to BIM standards or clashes between elements using hardwired constraints, or the mvdXML checker (Zhang 

et al. 2015), which checks for the conformance of a certain model to a Model View Definition, a construct that imposes additional 

constraints for validity onto an IFC file in addition to the constraints as dictated by the schema. The expressiveness of the mvdXML 

language however does not include querying for implicit relations between different instances, for example the spacing between two 

columns, as it has no notion of binary operators. Other approaches express topological relations, such as containment or adjacency, 

and implement these in query languages (Daum and Borrmann 2014). Such an approach enables to query for binary relational aspects 

of the model. Within the DURAARK project, metadata extraction utilities are provided (Beetz et al. 2014) to automatically extract 
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literal values from IFC files according to a metadata schema. This has been extended to determine Level of Development information 

by assessing calculated attributes based on geometric detail (Tamke et al. 2014b). 

APPLICATIONS OF MACHINE LEARNING 

The querying approaches presented above have in common that they are tailored to specific scenarios with predefined outcomes as 

they allow for no novelty or discovery. Conversely, the promise of machine learning is the extent to which it is able to make 

predictions and detect patterns. In order to make such predictions and find such patterns, typically, metrics about actual buildings 

would be collected, such as the measured energy efficiency. These real-world metrics can then serve as a label to the set of building 

models and, hence, patterns can be unravelled between the building configurations described in the models and their measured 

performance.  

In this paper both supervised and unsupervised machine learning (Mitchell 1997) of BIM models will be discussed. An unsupervised 

learning approach will be presented to show anomalies in building models. Unsupervised approaches work without the premise of 

aforementioned labels. More speculatively, it can be seen as a method to reduce the failure costs in the construction industry by 

flagging uncommon situations that might need additional checks or coordination. These anomalies could include unusual large 

overhangs or other situations that constitute an unusual confluence of several building elements. 

In addition, a supervised machine learning approach based on a neural network is discussed. It is able to classify floor plans 

according to its intended function. Such a system can be seen in the light of a large archival framework for building models in which 

information pertaining to intended function and use is often fragmented and incomplete. This paper argues that supervised learning 

can be used to complete missing attributes in such a dataset. Such an approach can be extended to classify based on other criteria, 

such as iconic and exemplary architectural edifices, based on geometrical descriptors. Both these attributes are common in the world 

of archival, but seldom explicitly documented for newly built artefacts.  

Both supervised as well as unsupervised learning algorithms typically assess a sample, in this case a building, by means of a set of 

features that describe the building. How such features can be extracted automatically from building models is described in the next 

section. 

IMPLEMENTATION 

The IFC Machine Learning platform presented in this paper is built on top of the DURAARK IFC metadata extractor (Beetz et al. 

2014) (Krijnen 2015). This utility is able to extract literal values, aggregates and derived values from IFC SPF files. The extraction 

utility presents a simplified Domain Specific Language (DSL) that enables users with little programming experience to map query 

paths pointing to literal values in the IFC file to keys in a metadata schema. Furthermore, the DSL provides functions to compute 

aggregates, such as to count the extent of a list or sum or concatenate attribute values. The DSL is a subset of the Python scripting 

language and is in fact executed as a regular Python program. In addition, serialization formats are provides to output the data in a 

format suitable for further processing. For example, in the context of the DURAARK workbench, the extracted values are written 

into a linked data RDF graph. This version of the extractor has been published under an open source license (Krijnen 2015a). For the 

Machine Learning platform, an additional output format has been added to output Comma Separated Value files.  

What follows now are short excerpts of the data extraction system to highlight some key aspects of its use. For example, to query the 

unique identifiers of all wall elements one could invoke the following statement: 

csv_formatter << [ 

 file.IfcWall.GlobalId >> "ifc_ml:wall_identifiers" 

] 

Listing 1: Code required to output wall identifiers 

 

0 

1 

2 

wall_identifiers 

2O2Fr$t4X7Zf8NOew3FL9r 

2O2Fr$t4X7Zf8NOew3FLIE 

2O2Fr$t4X7Zf8NOew3FLPP 

... 

Listing 2: Output from the program provided in Listing 1  

csv_formatter << [ 

 file.IfcWall >> count >> "ifc_ml:wall_count" 

] 

Listing 3: Code required to output the number of walls in an IFC file 

wall_count 

57 

Listing 4: Output from the program provided in Listing 3 

The hypothesis in this paper is that geometrical properties of the building elements and their relations can be used to build an implicit 

architectural knowledge model that can be assessed with Machine Learning. Therefore, in order to extract geometrical quantities that 

are derived from the body representation of IfcProducts, the DSL has been extended with geometrical operators. In addition, to 

calculate the minimal distance between these products, the concept of binary functions is introduced that signify a relationship with 
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other products in the file. The geometrical and topological analysis functionality is implemented on top of IfcOpenShell (Krijnen 

2015b) and pythonOCC (Paviot 2014). 

elems = file.IfcProduct 

    >> segment(by_entity) 

    >> segment(by_attribute("GlobalId")) 

 

csv_formatter << [ 

 elems >> shape_area >> "ifc_ml:area", 

 elems >> shape_volume >> "ifc_ml:volume", 

 elems >> shape_gyradius >> "ifc_ml:gyradius" 

] 

Listing 5: A more elaborate example that lists geometrical attributes for all building elements 

segment_0  

IfcBeam 

IfcSlab   

IfcSpace  

IfcWallSt... 

... 

segment_1 

2OrWItJ6z... 

1CZILmCaH... 

0BTBFw6f9... 

0dxE1Sy6n... 

... 

area 

9.17  

53.89 

67.50  

23.64  

...    

gyradius 

1.78  

2.10  

1.80  

1.20 

...  

volume 

 0.04 

 3.81 

33.51 

 1.64 

... 

Listing 6: Output from the program provided in Listing 5 

UNSUPERVISED LEARNING: ANOMALY DETECTION 

As an unsupervised method, outlier detection is applied to the geometrical attributes of the elements in a model. Outliers are the 

samples that deviate from an observed median area. In this experiment the duplex apartment model is used (NIBS 2013). The 

building element samples are segmented according to their entity type (wall, window, and so on). For each of these element types, an 

elliptical envelope is fit through the sample data. For this purpose the scikit-learn toolkit (Pedregosa et al. 2011) has been used. For 

demonstration purposes, a two-dimensional plot of the data is shown below, where the dimensionality of the data is reduced by using 

the ratio between the geometrical attributes. The plot highlights that are is a clear centre in which most of the samples reside and that 

there are clear outliers outside of this centre area. The samples are coloured according to their Mahalanobis distance to the centre. 

This distance metric accounts for the distribution of the data, contrary to a Euclidian distance would and is a common measure for 

classification purposes. Contours of the elliptical boundary are shown in dashed lines. 
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Figure 1: IfcWallStandardCase anomalies in the Duplex Apartment model according to their geometrical attributes  

 

0iEHWY1$XA8eQeeULq4jpl 

0jf0rYHfX3RAB3bSIRjmpw 

1aj$VJZFn2TxepZUBcKphf 

3Y4YRln2r91vflHcHE5ITm 

... 

Mahalanobis distance 

2.00135121249 

87.4188172025 

2009.27365845 

38142.0133829 

... 

 

Listing 7: An excerpt of the wall GlobalIds with their Mahalanobis distance 

Visually, the same information can be represented by colour coding the model elements, as can be seen in Figure 2. In this overview 

it can be assessed that the ten elements with the highest distances are in fact miscategorised to be wall elements. If one inspects the 

definition of a wall in the IFC schema one can see that these elements do not fulfil a role in bounding or subdividing the construction 

work. In fact, they appear to be narrow and horizontal structural members and therefore could have been more suitably classified as a 

beam. 

 

Figure 2: Ten elements in the duplex model that are misclassified as wall found by anomaly detection 

To summarize, by looking at a single model, the algorithm has been able to identify the geometrical essence of a wall and found 

elements that deviate from this idea. It seems that these are likely misclassified elements. In building projects misclassifications can 

be problematic as they might result in elements escaping from being verified the appropriate person, in this case perhaps by a 

structural engineer, as he might inspect only a subset of the model corresponding to a structural view, to which architectural wall 

elements do not belong. 

A more precise classification of anomalies can be obtained by training the algorithm with a dataset that is known to be correct. In this 

way outliers do not contaminate the dataset and, therefore, a more precise decision boundary can be obtained. Furthermore, other 

algorithms can be applied that pose fewer restrictions on the distribution and modality of the data. The elliptical envelope method, 

which has been used in this example, works best on Gaussian, symmetric and unimodal distributions of the feature vectors. 

It is assumed that this line of reasoning can be extended to more sophisticated discoveries if relational parameters to other nearby 

products are introduced. In such a way, clearance areas, for example which can be found near stairs or doors, can be assessed. Or the 

load-bearing characteristics of a column can be schematized as an element that directly connects to an element to the top and to the 

bottom of it. For these advanced relational concepts the definition of orientation of elements is crucial. These experiments are to be 

done in follow-up research. 

SUPERVISED LEARNING: NEURAL NETWORKS 

BIM models are able to represent many facets of a building, in addition to geometrical and relational information, for example by 

using predefined and extensible property set or reference to external data sources. However, datasets from practice (DURAARK 

2015) show that BIM models typically contain this information only partly and have heterogeneous levels of information. Metadata 

records that might exist for one building might be absent for the other. As such, it is worthwhile to investigate whether Machine 

Learning can act as a means to supplement or complete this information. In this experiment, individual building elements are no 
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longer subject of examination, but instead building storeys, a common aggregate structure in building models are assessed in order to 

classify them according to their function and intended use. This is metadata that is typically not semantically available in an IFC 

building model, but is very relevant in a digital archive. By looking at the spatial configuration of a floor plan, a neural network is 

trained to differentiate between residential and institutional facilities. 

The dataset consists of publicly available models augmented with models that have been aggregated over the course of the 

DURAARK project. An overview of the models, separated by floor and divided by their residential or non-residential labels is 

provided in Figure 3. 

 

Figure 3 Residential (left) and Non-residential (right) building storeys in the dataset 

The geometrical attributes that are used to assess the floor plans are provided in Listing 8. As a measure for the compactness of a 

space, the radius of gyration (gyradius) is used. Alternatives to this metric include for example the ratio between surface area and 

bounding volume (Corney et al. 2002), but it is assumed that for this purpose a high gyradius specifically signifies long branching 

corridors. To be precise, in this specific case, the gyradius refers to the radius around the vertical axis through the centre of mass of 

the solid volume. It is a measure for the distribution of mass around this vertical axis. This implies that for a shape that describes a 

network of corridors this measure will be higher than for a cylinder, even if they bear the same volume, the latter being the most 

compact 2.5D shape. An overview of the gyration radius and centre of mass for two distinct solid shapes can be seen in Figure 4. 

Space - wall volume ratio 

Space - slab volume ratio 

Doors per space 

Average space volume 

Space volume variance 

Average space gyradius 

Space gyradius variance 

Column wall ratio 

Measures the amount of spatial segregation 

Measures the amount of spatial segregation in vertical direction 

Measures the connectivity of spaces 

Measures the size of the spaces 

Measures the extent to which spaces vary in size 

Measures the compactness of the spaces 

Measures the extent to which the compactness of the spaces varies 

Measures whether walls or columns are used for load bearing 

Listing 8: Features incorporated in the floor plan assessment 
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Figure 4 Two distinct solids of identical volume with their centre of mass and gyradius 

During the training phase of a neural network a (locally) optimal configuration of connections between neurons will be formed that 

pertains to the situation at hand. This is implemented by means of a gradient-descent based optimization algorithm, called back-

propagation. Such an algorithm functions best on normalized features so that the range of values for different features roughly 

corresponds. Thus, the geometrical attribute values are normalized and scaled so that they all cover, more or less, the same range and 

their median values are close to zero. An example of two features before and after feature scaling is provided in Figure 5. Also, 

notice how these two features already exhibit some grouping in terms of the labels, mostly the variance in space volumes appears to 

be much higher for the non-residential facilities. 

 

Figure 5 Two features before and after scaling 

According to best practices, the labelled dataset is divided into three distinct subsets: a training set (70%), a cross-validation set 

(20%) and a test set (10%). The training set acts as the input for the back-propagation algorithm and determines the weights of the 

network edges between the neurons. In order to pick a network that pertains to a general solution and not just specifically to the 

training set input, the optimal network is selected based on its misclassification error on the cross-validation set, which has not been 

used to build the network. In this particular case a network with bias units and without hidden layers proved to result in the lowest 

misclassification error on the cross-validation set. Both these concepts in general make the network more capable to fit complicated 

problems, as the number of neurons increases. The network has been trained for 4000 iterations. The remaining final 10% of the 

models provide an indication of the actual performance of the network on unseen cases. The models are provided in Figure 6. 

According to the manual labelling process there is a single model that is misclassified, it is a non-residential floor layout categorized 

as a residential floor plan. In defence of the algorithm, one might argue that it is a difficult case, as it is the cellar of an historic 

building for which there are no other samples in the training set. The neural network has been implemented in the Python 

programming language using PyBrain (Schaul et al. 2010). 

 

Figure 6 Results on the test set with all successful classifications marked in green 

To conclude, it has been shown that a neural network has been able to differentiate floor plan layouts into two categories based on 

their geometrical appearance. The authors assume that such classification can be augmented with metrics from spatial connectivity 

graphs, including aspects like centrality and clustering coefficients. With a bigger dataset and more features, future research will 

indicate whether it is possible to distinguish between more categories of building functions. In this example, the neural network has 

been formed to some extent by trial and error, which is not uncommon in this domain. A more systematic and exhaustive application 

is of neural networks is beyond the scope of this paper and will have to be extended upon in future research. From both machine 

learning examples in this paper one can draw that the geometrical nature of the elements that constitute a BIM model provides 

insight into the nature of these elements on their own and into the assembly they form as a whole. 

CONCLUSION 



 

Design Modelling Symposium Copenhagen 2015 

7 

 

The paper demonstrates the application of both supervised and unsupervised machine learning methods with Building Information 

Models. The implicit attributes and qualifications can currently not be found by means of traditional computational approaches in 

architectural practice. Results from machine learning on architectural datasets provide a relevant alternative view to explicit querying 

mechanisms and provides useful insights for more informed decisions in the design and management of buildings. 

This paper presents initial research into the use of machine learning to create architectural insights. The feasibility of the approach 

was proven on rather basic examples. Future research will have to indicate how this can be extended and generalized into other areas 

for instance for the more complete quality assurance of BIM models. The search for misclassified elements is here a starting point 

into further research, which might even address the assessment and classification of designs and architectural qualities.  

In particular relational characteristics on the level of the building element, such as clearance areas and typical confluences of specific 

element types, might yield a richer comprehension of implicit knowledge and would further exploit the relational nature of an IFC 

file. On the level of building stories, graph measures relating to spatial connectivity might be vital to develop a more detailed 

understanding on the exact spatial configuration and therefore a more precise functional classification. 

The computational approaches, which are currently used in practice to assess BIM models, build upon explicit rules (Solibri 2015) 

built by experts. Machine learning might enable less technical users to query complex BIM datasets for highly practice and project 

specific insights. 
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